Diffusion of MRI and CT contrast agents in articular cartilage under static compression

150 150 DaCosta Lab

Shafieyan Y, Khosravi N, Moeini M, Quinn TM.


Cartilage has a limited capacity for self-repair and focal damage can eventually lead to complete degradation of the tissue. Early diagnosis of degenerative changes in cartilage is therefore essential. Contrast agent-based computed tomography and magnetic resonance imaging provide promising tools for this purpose. However, the common assumption in clinical applications that contrast agents reach steady-state distributions within the tissue has been of questionable validity. Characterization of nonequilibrium diffusion of contrast agents rather than their equilibrium distributions may therefore be more effective for image-based cartilage assessment. Transport of contrast agent through the extracellular matrix of cartilage can be affected by tissue compression due to matrix structural and compositional changes including reduced pore size and fluid content. We therefore investigate the effects of static compression on diffusion of three common contrast agents: sodium iodide, sodium diatrizoate, and gadolinium diethylenetriamine-pentaacid (Gd-DTPA). Results showed that static compression was associated with significant decreases in diffusivities for sodium iodide and Gd-DTPA, with similar (but not significant) trends for sodium diatrizoate. Molecular mass of contrast agents affected diffusivities as the smallest one tested, sodium iodide, showed higher diffusivity than sodium diatrizoate and Gd-DTPA. Compression-associated cartilage matrix alterations such as glycosaminoglycan and fluid contents were found to correspond with variations in contrast agent diffusivities. Although decreased diffusivity was significantly correlated with increasing glycosaminoglycan content for sodium iodide and Gd-DTPA only, diffusivity significantly increased for all contrast agents by increasing fluid fraction. Because compounds based on iodine and gadolinium are commonly used for computed tomography and magnetic resonance imaging, present findings can be valuable for more accurate image-based assessment of variations in cartilage composition associated with focal injuries.