Extending Immunofluorescence Detection Limits in Whole Paraffin-Embedded Formalin Fixed Tissues using Hyperspectral Confocal Fluorescence Imaging

150 150 DaCosta Lab

Constantinou P, DaCosta RS, Wilson BC; J Microsc. 2009;234:137-46

doi: 10.1111/j.1365-2818.2009.03155.x

Abstract

A major problem in microscopic imaging of ex vivo tissue sections stained with fluorescent agents (e.g. antibodies, peptides) is the confounding presence of background tissue autofluorescence. Autofluorescence limits (1) the accuracy of differentiating background signals from single and multiple fluorescence labels and (2) reliable quantification of fluorescent signals. Advanced techniques such as hyperspectral imaging and spectral unmixing can be applied to essentially remove this autofluorescent signal contribution, and this work attempts to quantify the effectiveness of autofluorescence spectral unmixing in a tumour xenograft model. Whole-specimen single-channel fluorescence images were acquired using excitation wavelengths of 488 nm (producing high autofluorescence) and 568 nm (producing negligible autofluorescence). These single-channel data sets are quantified against hyperspectral images acquired at 488 nm using a prototype whole-slide hyperspectral fluorescence scanner developed in our facility. The development and further refinement of this instrument will improve the quantification of weak fluorescent signals in fluorescence microscopy studies of ex vivo tissues in both preclinical and clinical applications.