Hybrid Manganese Dioxide Nanoparticles Potentiate Radiation Therapy by Modulating Tumor Hypoxia

556 598 DaCosta Lab

Abbasi AZ, Gordijo CR, Amini MA, Maeda A, Rauth AM, DaCosta RS, Wu XY; Cancer Res. 2016 Nov 15;76(22):6643-6656

doi: 10.1158/0008-5472.CAN-15-3475.

Abstract

Hypoxia in the tumor microenvironment (TME) mediates resistance to radiotherapy and contributes to poor prognosis in patients receiving radiotherapy. Here we report the design of clinically suitable formulations of hybrid manganese dioxide (MnO2) nanoparticles (MDNP) using biocompatible materials to reoxygenate the TME by reacting with endogenous H2O2 MDNP containing hydrophilic terpolymer-protein-MnO2or hydrophobic polymer-lipid-MnO2 provided different oxygen generation rates in the TME relevant to different clinical settings. In highly hypoxic murine or human xenograft breast tumor models, we found that administering either MDNP formulation before radiotherapy modulated tumor hypoxia and increased radiotherapy efficacy, acting to reduce tumor growth, VEGF expression, and vascular density. MDNP treatment also increased apoptosis and DNA double strand breaks, increasing median host survival 3- to 5-fold. Notably, in the murine model, approximately 40% of tumor-bearing mice were tumor-free after a single treatment with MDNPs plus radiotherapy at a 2.5-fold lower dose than required to achieve the same curative treatment without MDNPs. Overall, our findings offer a preclinical proof of concept for the use of MDNP formulations as effective radiotherapy adjuvants. Cancer Res; 76(22); 6643-56.

Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.