Porphyrin-Cross-Linked Hydrogel for Fluorescence-Guided Monitoring and Surgical Resection

150 150 DaCosta Lab

Lovell JF, Roxin A, Ng KK, Qiaochu QQ, McMullen JD, DaCosta RS, Zheng G; Biomacromolecules. 2011;12(9):3115-8

doi:10.1021/bm200784s

Abstract

We demonstrate that porphyrins can be used as efficient cross-linkers to generate a new class of hydrogels with enabling optical properties. Tetracarboxylic acid porphyrins reacted with PEG diamines to form a condensation polyamide in a range of appropriate conditions, with respect to reaction time, diisopropylethylamine initiator concentration, porphyrin-to-PEG ratio, porphyrin concentration, and PEG size. The network structure of the hydrogel maintained a porphyrin spacing that prevented excessive fluorescence self-quenching despite high porphyrin density. The near-infrared properties readily enabled low background, noninvasive fluorescence monitoring of the implanted hydrogel in vivo, as well as its image-guided surgical removal in real time using a low-cost fluorescence camera prototype. Emission could be tuned by incorporating copper metalloporphyrins into the network. The approach of creating hydrogels using cross-linking porphyrin comonomers creates opportunities for new polymer designs with strong optical character.

Privacy Preferences

When you visit our website, it may store information through your browser from specific services, usually in the form of cookies. Here you can change your Privacy preferences. It is worth noting that blocking some types of cookies may impact your experience on our website and the services we are able to offer.

Click to enable/disable Google Analytics tracking code.
Click to enable/disable Google Fonts.
Click to enable/disable Google Maps.
Click to enable/disable video embeds.
Our website uses cookies, mainly from 3rd party services. Define your Privacy Preferences and/or agree to our use of cookies.